29 research outputs found

    Psychological research in the digital age

    Get PDF
    The smartphone has become an important personal companion in our daily lives. Each time we use the device, we generate data that provides information about ourselves. This data, in turn, is valuable to science because it objectively reflects our everyday behavior and experiences. In this way, smartphones enable research that is closer to everyday life than traditional laboratory experiments and questionnaire-based methods. While data collected with smartphones are increasingly being used in the field of personality psychology, new digital technologies can also be leveraged to collect and analyze large-scale unobtrusively sensed data in other areas of psychological research. This dissertation, therefore, explores the insights that smartphone sensing reveals for psychological research using two examples, situation and affect research, making a twofold research contribution. First, in two empirical studies, different data types of smartphone-sensed data, such as GPS or phone data, were combined with experience-sampled self-report, and classical questionnaire data to gain valuable insights into individual behavior, thinking, and feeling in everyday life. Second, predictive modeling techniques were applied to analyze the large, high-dimensional data sets collected by smartphones. To gain a deeper understanding of the smartphone data, interpretable variables were extracted from the raw sensing data, and the predictive performance of various machine learning algorithms was compared. In summary, the empirical findings suggest that smartphone data can effectively capture certain situational and behavioral indicators of psychological phenomena in everyday life. However, in certain research areas such as affect research, smartphone data should only complement, but not completely replace, traditional questionnaire-based data as well as other data sources such as neurophysiological indicators. The dissertation also concludes that the use of smartphone sensor data introduces new difficulties and challenges for psychological research and that traditional methods and perspectives are reaching their limits. The complexity of data collection, processing, and analysis requires established guidelines for study design, interdisciplinary collaboration, and theory-driven research that integrates explanatory and predictive approaches. Accordingly, further research is needed on how machine learning models and other big data methods in psychology can be reconciled with traditional theoretical approaches. Only in this way can we move closer to the ultimate goal of psychology to better understand, explain, and predict human behavior and experiences and their interplay with everyday situations

    Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons

    No full text
    Significant photocurrent enhancement has been achieved for evaporated solid-phase-crystallized polycrystalline siliconthin-filmsolar cells on glass, due to light trapping provided by Agnanoparticles located on the rear siliconsurface of the cells. This configuration takes advantage of the high scattering cross-section and coupling efficiency of rear-located particles formed directly on the optically dense silicon layer. We report short-circuit current enhancement of 29% due to Agnanoparticles, increasing to 38% when combined with a detached back surface reflector. Compared to conventional light trapping schemes for these cells, this method achieves 1/3 higher short-circuit current

    Ecological impact assessments fail to reduce risk of bat casualties at wind farms

    Get PDF
    Demand for renewable energy is rising exponentially. While this has benefits in reducing greenhouse gas emissions, there may be costs to biodiversity [1]. Environmental Impact Assessments (EIAs) are the main tool used across the world to predict the overall positive and negative effects of renewable energy developments before planning consent is given, and the Ecological Impact Assessments (EcIAs) within them assess their species-specific effects. Given that EIAs are undertaken globally, are extremely expensive, and are enshrined in legislation, their place in evidence-based decision making deserves evaluation. Here we assess how well EIAs of wind-farm developments protect bats. We found they do not predict the risks to bats accurately, and even in those cases where high risk was correctly identified, the mitigation deployed did not avert the risk. Given that the primary purpose of an EIA is to make planning decisions evidence-based, our results indicate that EIA mitigation strategies used to date have been ineffective in protecting bats. In the future, greater emphasis should be placed on assessing the actual impacts post-construction and on developing effective mitigation strategies

    Urinary miRNA profiles discriminate between obstruction-induced bladder dysfunction and healthy controls.

    Get PDF
    Urgency, frequency and incomplete emptying are the troublesome symptoms often shared between benign prostatic obstruction-induced (BLUTD) and neurogenic (NLUTD) lower urinary tract dysfunction. Previously, using bladder biopsies, we suggested a panel of miRNA biomarkers for different functional phenotypes of the bladder. Urine is a good source of circulating miRNAs, but sex- and age-matched controls are important for urinary metabolite comparison. In two groups of healthy subjects (average age 32 and 57 years old, respectively) the total protein and RNA content was very similar between age groups, but the number of secreted extracellular vesicles (uEVs) and expression of several miRNAs were higher in the young healthy male volunteers. Timing of urine collection was not important for these parameters. We also evaluated the suitability of urinary miRNAs for non-invasive diagnosis of bladder outlet obstruction (BOO). A three urinary miRNA signature (miR-10a-5p, miR-301b-3p and miR-363-3p) could discriminate between controls and patients with LUTD (BLUTD and NLUTD). This panel of representative miRNAs can be further explored to develop a non-invasive diagnostic test for BOO. The age-related discrepancy in the urinary miRNA content observed in this study points to the importance of selecting appropriate, age-matched controls

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Factors Associated with Revision Surgery after Internal Fixation of Hip Fractures

    Get PDF
    Background: Femoral neck fractures are associated with high rates of revision surgery after management with internal fixation. Using data from the Fixation using Alternative Implants for the Treatment of Hip fractures (FAITH) trial evaluating methods of internal fixation in patients with femoral neck fractures, we investigated associations between baseline and surgical factors and the need for revision surgery to promote healing, relieve pain, treat infection or improve function over 24 months postsurgery. Additionally, we investigated factors associated with (1) hardware removal and (2) implant exchange from cancellous screws (CS) or sliding hip screw (SHS) to total hip arthroplasty, hemiarthroplasty, or another internal fixation device. Methods: We identified 15 potential factors a priori that may be associated with revision surgery, 7 with hardware removal, and 14 with implant exchange. We used multivariable Cox proportional hazards analyses in our investigation. Results: Factors associated with increased risk of revision surgery included: female sex, [hazard ratio (HR) 1.79, 95% confidence interval (CI) 1.25-2.50; P = 0.001], higher body mass index (fo

    A High-Throughput, Multiplexed Kinase Assay Using a Benchtop Orbitrap Mass Spectrometer To Investigate the Effect of Kinase Inhibitors on Kinase Signaling Pathways

    No full text
    Protein phosphorylation is an important and ubiquitous post-translational modification in eukaryotic biological systems. The KAYAK (<u>K</u>inase <u>A</u>ctivit<u>Y</u> <u>A</u>ssay for <u>K</u>inome profiling) assay measures the phosphorylation rates of dozens of peptide substrates simultaneously, directly from cell lysates. Here, we simplified the assay by removing the phosphopeptide enrichment step, increasing throughput while maintaining similar data quality. We term this new method, direct-KAYAK, because kinase activities were measured directly from reaction mixtures after desalting. In addition, new peptides were included to profile additional kinase pathways and redundant substrate peptides were removed. Finally, the method is now performed in 96-well plate format using a benchtop orbitrap mass spectrometer and the Pinpoint software package for improved data analysis. We applied the new high-throughput method to measure IC<sub>50</sub> values for kinases involved in monocyte-to-macrophage differentiation, a process important for inflammation and the immune response
    corecore